منشور: (Prism)
منشور در لغت به معنی پراکنده, نشر شده, زنده شده و مبعوث است و در اصطلاح هندسه نام شکل است که دو قاعده دارد که دو چند ضلعی مساوی هستند و بدنه منشور(سطح جانبی منشور ) از مستطیلها یا متوازی الاضلاعها تشکیل شده است.
منشور: (Prism)
منشور در لغت به معنی پراکنده, نشر شده, زنده شده و مبعوث است و در اصطلاح هندسه نام شکل است که دو قاعده دارد که دو چند ضلعی مساوی هستند و بدنه منشور(سطح جانبی منشور ) از مستطیلها یا متوازی الاضلاعها تشکیل شده است.
معرفی منشور 5 پهلو:
ی نام شکل: منشور 5 پهلو
ی یال های منشور: 'EE',DD',CC',BB',AA
ی وجه منشور: هر کدام از مستطیل های جانبی را یک وجه منشور می نامند.
ی ارتفاع منشور: از آنجا که هر کدام از یال ها بر دو قاعده منشور عمود می باشند, لذا ارتفاع منشور با اندازه هر یک از یال ها برابر است.
ی قاعده ی منشور: منشور دو قاعده دارد. ABCDE و 'A'B'C'D'E که دو پنج ضلعی مساوی اند.
رابطه های مهم:
ارتفاع × مساحت قاعده = حجم منشور
ارتفاع × محیط قاعده = مساحت جانبی منشور
مساحت دو قاعده + مساحت جانبی = مساحت کل منشور
استوانه: (Cylinder)
نام شکلی است که دو قاعده دارد که دو دایره مساوی هستند و بر جانبی راست استوار است.
اگر مستطیل را حول طول آن دوران دهیم, شکل فضایی حاصل استوانه نامیده می شود. در این صورت طول مستطیل ارتفاع استوانه و عرض آن شعاع قاعده استوانه می باشد.
در شکل بالا مستطیل ABCD را حول طول آن دوران داده ایم و استوانه بوجود آمده است.
رابطه های مهم:
ارتفاع×مساحت قاعده(دایره) = حجم استوانه
ارتفاع×محیط قاعده(دایره) = مساحت جانبی استوانه
مساحت دو قاعده + مساحت جانبی = مساحت کل استوانه
هرم: (pyramid)
هرم در لغت به معنی سخت پیر گردیدن و کلان سال شدن است و در اصطلاح هندسه حجمی است که قاعده آن یک چند ضلعی و وجوه جانبی اش مثلثهایی باشند که همه به یک رأس مشترک(رأس هرم) منتهی می شوند.
معرفی هرم منتظم:
ی نام شکل: هرم منتظم.
ی رأس هرم: نقطه S
ی ارتفاع هرم: پاره خطی است که از رأس هرم به مرکز قاعده ی هرم عمود است(SO)
ی قاعده هرم: پنج ضلعی منتظم ABCDE
ی سهم هرم: ارتفاع مثلث های جانبی, ارتفاع هر وجه جانبی هرم منتظم(SH).
ی وجه هرم: هر یک از مثلث هایی که بدنه هرم را می پوشانند را یک وجه جانبی می نامیم.
ی یال هرم: محل تقاطع هر دو وجه جانبی را یال هرم می نامیم. SE,SD,SC,SB,SA
رابطه های مهم:
مخروط : (cone)
مخروط به معنی خراشیده شده ، تراشیده شده و خراطی شده است ودر اصطلاح هندسه حجمی است که از دوران مثلث قائم الزاویه حول یک ضلع آن به دست می آید . کله قند و کلاه بوقی نمونه هایی به شکل مخروط هستند.
معرفی مخروط :
ی نام شکل : مخروط
ی رأس :نقطه ی s
ی ارتفاع :پاره خط SO ضلعی که مثلث قائم الزاویه را حول آن دوران داده ایم تا مخروط بوجود آید.
پاره خطی است که از رأس مخروط بر صفحه ی قاعده ی آن عمود است .
ی قاعده ی مخروط : دایره c به مرکز O و شعاع oB را قاعده ی مخروط می نامیم.
ی مولد مخروط :پاره خط SA یا SB ، وتر مثلث قائم الزاویه که مخروط را بوجود آورده است.
رابطه های مهم :
کره : (sphere)
کره به معنی گوی و آن چه که به شکل گوی باشد، است و در اصطلاح هندسه شکلی است که از دوران نیم دایره حول قطرش بوجود می آید . مانند توپ ، گوی چوگان
معرفی کره:
ی مرکز کره :نقطه ی O
ی شعاع کره :R (فاصله ی نقاط روی سطح کره از مرکز کره)
ی دایره ی عظیمه :اگر یک کره را نصف کنیم، دایره ای که از نصف کردن کره بدست می آید،
دایره عظیمه نام دارد .
رابطه های مهم :
1- اگر مثلث قائم الزاویه ای را حول وترش دوران دهیم ، دو مخروط پدید می آید که قاعده های آن ها بر هم منطبق اند. مثال: مثلث قائم الزاویه ای به اضلاع 6 ، 8 ، 10 ، را حول وتر این مثلث دوران می دهیم . حجم جسم حاصل را حساب کنید .
حل:
2- با توجه به دستور محاسبه ی مساحت کره (r۲ ת 4) مشخص می شود که اگر شعاع کره ای را a برابر کنیم مساحت آن a۲ برابر می شود. مثال: اگر شعاع کره ای را 5 برابر کنیم ، مساحت آن چه تغییری می کند؟ حل:
3- با توجه به دستور محاسبه ی حجم کره مشخص می شود که اگر شعاع کره ای را a برابر کنیم، حجم آن a۲ برابر می شود. مثال: اگر شعاع کره ای را 3 برابر کنیم ، حجم آن چه تغییری می کند؟ حل: یعنی حجم کره ی جدید 27 برابر جحم کره ی قدیمی می باشد.
4- اگر مکعبی را در یک کره محاط کنیم ، قطر مکعب با قطر کره مساوی است .
5- از دوران یک ذوزنقه ی قائم الزاویه حول ساق قائم ، مخروط ناقصی پدید می آید که حجم آن ازدستور زیر قابل محاسبه است:
|
تست1 :
مثلث ABC راحول وتر BC دوران می دهیم. حجم شکل حاصل برابر است با :
(3=ת)
د)2 | ج)2 | ب)2 | الف) |
تست2 :
اگر شعاع قاعده ی یک مخروط را دو برابر و ارتفاع آن را 3 برابر کنیم ، حجم مخروط چند برابر خواهد شد؟
د) 8 برابر | ج)12 برابر | ب) 6 برابر | الف) 4 برابر |
تست3 :
اگر شعاع قاعده ی استوانه ای را 3 برابر و ارتفاع آن را ثلث کنیم ، حجم استوانه حاصل .......
د) 9 برابر می شود | ج)تغییر نمی کند | ب)3 برابر می شود | الف) ثلث می شود |
تست4 :
در کره ای به شعاع یک مکعب محاط شده است . نسبت حجم این کره به مکعب چند است؟
د) | ج)2 | ب)2 | الف) |
تست5 :
گسترده ی سطح جانبی یک مخروط دوار نیم دایره است.
زاویه ی مولد این مخروط با ارتفاع آن چند درجه است؟
د) ˚15 | ج) ˚60 | ب) ˚45 | الف) ˚30 |